Diagnosis Of Hepatocellular Carcinoma Using A GALAD Model By Objective Clinical And Serological Factors

H. Toyoda¹, T. Kumada¹, C. kagebayashi², S. Satomura², M. Teng³, S. Berhane⁴, S. Pirrie³, T. Cox⁴, P. Johnson⁴ ¹Ogaki Municipal Hospital, Gifu, Japan; ²Wako Life Sciences, Inc., Mountain View, CA, USA; ³School of Cancer Sciences, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, University of Liverpool, UK is ⁴Institute of Translational Medicine, UN is ⁴Institute of Translationa

Background

Late diagnosis of hepatocellular carcinoma (HCC) frequently poor patient outcome. Routine surveillance is recommended early stage HCC so as to be able to apply curative treatments. common tests used for surveillance are alpha-fetoprotein (AF ultrasound (US). However, interpretation of US can be challer without comparison to previous imaging results and can be li patients who are obese or have severe background liver cirrhe quality is user dependent which may affect its ability to be us detect HCC lesions early. Therefore, reliable serological bioma needed. Lens culinaris agglutinin-reactive fraction of alpha-fe (AFP-L3) and des-gamma-carboxy prothrombin (DCP) are bior widely used for surveillance in Japan. These biomarkers are complementary and their simultaneous measurement is recommended. In this study, we describe the use of a newly developed and validated statistical model ("GALAD") using the three biomarkers and objective factors (age and gender) for HCC diagnosis.

Procedure					
Step 1 Model Development	Step 2 Model Validation	S Mode			
Logistic regression analysis using the data set from Birmingham. Five factors were identified on univariate analysis that discriminated between HCC and non-HCC. → Gender, Age, AFP-L3, AFP, DCP	 The model was built on a dataset from Birmingham and internally validated on a second dataset from Birmingham then externally validated on a Newcastle dataset. The coefficients were set for the model. → GALAD Model 	Here, the reinternation using the coordinate of			
Model Development					

Table 1. Parameter estimates (se) and odds ratios (95% confidential intervals) of variables based on the model [UK dataset]

Variable	β (se)	Odds Ratio (95% CI)	χ2
Constant	-10.08 (1.08)	_	-
Age	0.09 (0.01)	1.10 (1.07-1.13)	44.87
Gender	1.67 (0.33)	5.30 (2.79-10.07)	25.89
Log (AFP)	2.34 (0.33)	10.34 (5.40-19.79)	49.73
AFP-L3	0.04 (0.01)	1.04 (1.01-1.07)	8.66
Log (DCP)	1.33 (0.17)	3.77 (2.73-5.21)	64.56

Z = -10.08 + 1.67 x [G] + 0.09 x [Age] + 0.04 x [L] + 2.34 x log[AFP] + 1.33 x log[D]

[G]: Gender (0=Female, 1=Male) [Age]: Age (year)

[L]: AFP-L3 (%) [AFP]: AFP (ng/mL) [D]: DCP (ng/mL)

Model Validation

Table 2. The GALAD model performance [UK dataset]

	TRUE	TRUE	FALSE	FALSE			
	HCC	non-HCC	HCC	non-HCC	Sensitivity	Specificity	Cut-off
	(n)	(n)	(n)	(n)			
Max. Sens. (Spec.=0.80)	367	347	87	15	96%	80%	-1.36
Max. Spec. (Sens.=0.80)	306	420	14	76	80%	97%	0.88
Max. Sens.+Spec.	356	385	49	26	93%	89%	-0.63

Patient Characteristics

Table 3. Characteristics of HCC and chronic liver disease (CLD) patients

Variable	Ogaki, Japan		Birmingham, UK		Newcastle, UK	
	HCC (n=438)	CLD (n=607)	HCC (n=331)	CLD (n=339)	HCC (n=63)	CLD (n=100)
Demographics						
Median age (25%-75% quartile)	69 (62-75)	66 (57-73)	66 (59 -73)	53 (45-63)	69 (6275)	64 (57-69)
Gender (Male: Female	e) 317:121	298:309	272:59	214:125	53:10	42:58
Etiology						
HCV:HBV:B+C:Other	328:56:9:45	378:105:10 :114	43:30:2:159 (Alcohol: 81)	74:58:6:128 (Alcohol: 53)	0:0:0:54 (Alcohol: 27)	0:0:0:100 (Alcohol: 17)
HCC Biomarkers, Media	an (25%-75% quar	tile)				
AFP (ng/mL)	9.3 (5.1-29.4)	3.3 (2.0-7.1)	57.0 (8.3-1438.0)	2.8 (2.0–4.7)	44.5 (6.1 – 1501.9)	3.2 (2.3 – 4.7)
AFP-L3 (%)	5.0 (0.5-8.4)	0.5 (0.5-4.6)	16.6 (7.0-51.9)	0.5 (0.5–7.1)	24.5 (8.1 – 49.4)	0.5 (0.5–7.7)
DCP (ng/mL)	0.40 (0.22-2.52)	0.22 (0.16-0.3)	20.8 (2.6-169.7)	0.35 (0.27 – 0.60)	16.3 (3.0–102.7)	0.5 (0.4–0.8)
Liver Function Tests, M	edian (25%-75% q	uartile)				
Albumin (g/dL)	3.7 (3.4-4.0)	4.0 (3.6-4.2)	3.9 (3.4-4.3)	4.4 (4.0-4.6)	3.6 (±0.56)	4.4 (4.1-4.7)
Bilirubin (mg/dL)	0.8 (0.6-1.1)	0.8 (0.6-1.0)	1.0 (0.6-1.6)	0.6 (0.5-1.1)	1.0 (0.7-1.8)	0.5 (0.4-0.8)
Child-Pugh						
A:B:C	347:83:8	507:89:11	245:73:10	291:43: 4	40:12:11	NK

Results

Figure 1. (A) Receiver operating characteristic curves and (B) distribution of patients with various patterns of positivity for the biomarkers (Cut-off: AFP, 20 ng/mL; AFP-L3, 7%; DCP, 0.48 ng/mL) [Ogaki dataset]

results in
l to detect
. The most
FP) and
nging
imited in
nosis. US
sed to
arkers are
etoprotein
markers

tep 3

Evaluation model is nally evaluated dataset from

nicipal Hospital. nalysis,

vity/ Specificity

p-value
_
<0.001
<0.001
<0.001
0.003
<0.001

Table 4. Sensitivity, Specificity, and Area under the curve (AUC) for the biomarkers and the GALAD model [Ogaki dataset]

	Cut-off*	Sensitivity	Specificity	AUC	P value
Individual					
AFP	20 ng/mL	29.5%	89.8%	0.740	
AFP-L3	7%	33.3%	87.0%	0.716	
DCP	0.48 ng/mL	46.1%	89.8%	0.717	
Combination					
AFP + AFP-L3 + DCP	Same as above	68.9%	73.1%	0.768	~ 0001**
GALAD Model	-1.41	73.7%	76.8%	0.821	<.0001

* Cut-off points for three biomarkers were based on the guideline of the Japan Society of Hepatology and our previous studies. For the GALAD model, the optimum cut-off point was set from the ROC analysis.

** The *P* value was comparison of AUC between 3 biomarkers and the GALAD model.

tumor size (cm)

Maximum tumor size (X) X ≤ 2 cm $2 < X \le 3$ cm $3 < X \leq 5 \text{ cm}$ 5 cm < X All

conventional combined use of AFP, AFP-L3, and DCP.

- and 0.893 for Ogaki and UK, respectively).
- and serological factors.

Disclosure Statement: The authors have no conflict of interest to declare.

THE LIVER MEETING, The 64th Annual Meeting of the American Association for the Study of Liver Diseases 2013: Poster-2112

Results

Table 5. Area under the curve (AUC) for the GALAD model by maximum

Ogaki			UK		
n	AUC	n	AUC		
200	0.782	35	0.893		
111	0.829	59	0.940		
81	0.862	94	0.958		
46	0.895	164	0.980		
438	0.821	352	0.959		

Discussion

The GALAD model developed for the discrimination between HCC and non-HCC gave higher sensitivity and specificity compared to the

The model gave consistently high figures for the AUC in the datasets from both Ogaki and UK (0.821 and 0.959, respectively).

The AUC values of the subgroup of patients who had a tumor sizes over 2 cm were higher than that of patients with tumors less than 2 cm (0.782

The model may help diagnosis of HCC on the grounds of objective clinical

References

Johnson P, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers. Cancer Epidemiol Biomarkers Prev. 2013 in press